Speaker Verification Using Adapted Gaussian Mixture Models

نویسندگان

  • Douglas A. Reynolds
  • Thomas F. Quatieri
  • Robert B. Dunn
چکیده

In this paper we describe the major elements of MIT Lincoln Laboratory’s Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but effective GMMs for likelihood functions, a universal background model (UBM) for alternative speaker representation, and a form of Bayesian adaptation to derive speaker models from the UBM. The development and use of a handset detector and score normalization to greatly improve verification performance is also described and discussed. Finally, representative performance benchmarks and system behavior experiments on NIST SRE corpora are presented.  2000 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Identification And Verification Of Noisy-Echoed Speech Using Gaussian Mixture Models

— The two major applications of speaker recognition applications are speaker verification and speaker identification. But in most of the cases the signal is corrupted with background interferences such as noise and echo. This paper proposes the method of speaker recognition and identification after the noise separation and echo cancellation. Support vector machine(svm) classification based sign...

متن کامل

User-customized Password Speaker Verif Gmm Model

In this paper, we present a new approach towards user-customized password speaker verification combining the advantages of hybrid HMM/ANN systems, usingArtificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models , and Gaussian Mixture Models. In the approach presented here, we indeed exploit the properties of hybrid HMM/ANN systems, usually resulting in high phon...

متن کامل

Text Independent Speaker Verification Using Adapted Gaussian Mixture Models Textoberoende talarverifiering med adapterade Gaussian-Mixture-modeller

The primary goal of this master thesis project is to implement a text independent speaker verification module for GIVES. Secondary goals are to implement a fast scoring method and compare performance between the implemented text independent module and an available text dependent module. The project also includes a literature study. The text independent module is based on adapted Gaussian Mixtur...

متن کامل

New background modeling for speaker verification

A new background speaker modelling method is presented in this paper for text-independent speaker verification using Gaussian mixture models. This method does not require speech databases of other speakers to build background speaker models. A background model can be built directly from the same claimed speaker's database and has a smaller number of Gaussian mixtures compared to the claimed spe...

متن کامل

Learning to boost GMM based speaker verification

The Gaussian mixture models (GMM) has proved to be an effective probabilistic model for speaker verification, and has been widely used in most of state-of-the-art systems. In this paper, we introduce a new method for the task: that using AdaBoost learning based on the GMM. The motivation is the following: While a GMM linearly combines a number of Gaussian models according to a set of mixing wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Signal Processing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000